Improved catalytic properties of halohydrin dehalogenase by modification of the halide-binding site.

نویسندگان

  • Lixia Tang
  • Daniel E Torres Pazmiño
  • Marco W Fraaije
  • René M de Jong
  • Bauke W Dijkstra
  • Dick B Janssen
چکیده

Halohydrin dehalogenase (HheC) from Agrobacterium radiobacter AD1 catalyzes the dehalogenation of vicinal haloalcohols by an intramolecular substitution reaction, resulting in the formation of the corresponding epoxide, a halide ion, and a proton. Halide release is rate-limiting during the catalytic cycle of the conversion of (R)-p-nitro-2-bromo-1-phenylethanol by the enzyme. The recent elucidation of the X-ray structure of HheC showed that hydrogen bonds between the OH group of Tyr187 and between the Odelta1 atom of Asn176 and Nepsilon1 atom of Trp249 could play a role in stabilizing the conformation of the halide-binding site. The possibility that these hydrogen bonds are important for halide binding and release was studied using site-directed mutagenesis. Steady-state kinetic studies revealed that mutant Y187F, which has lost both hydrogen bonds, has a higher catalytic activity (k(cat)) with two of the three tested substrates compared to the wild-type enzyme. Mutant W249F also shows an enhanced k(cat) value with these two substrates, as well as a remarkable increase in enantiopreference for (R)-p-nitro-2-bromo-1-phenylethanol. In case of a mutation at position 176 (N176A and N176D), a 1000-fold lower catalytic efficiency (k(cat)/K(m)) was obtained, which is mainly due to an increase of the K(m) value of the enzyme. Pre-steady-state kinetic studies showed that a burst of product formation precedes the steady state, indicating that halide release is still rate-limiting for mutants Y187F and W249F. Stopped-flow fluorescence experiments revealed that the rate of halide release is 5.6-fold higher for the Y187F mutant than for the wild-type enzyme and even higher for the W249F enzyme. Taken together, these results show that the disruption of two hydrogen bonds around the halide-binding site increases the rate of halide release and can enhance the overall catalytic activity of HheC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Halohydrin dehalogenases are structurally and mechanistically related to short-chain dehydrogenases/reductases.

Halohydrin dehalogenases, also known as haloalcohol dehalogenases or halohydrin hydrogen-halide lyases, catalyze the nucleophilic displacement of a halogen by a vicinal hydroxyl function in halohydrins to yield epoxides. Three novel bacterial genes encoding halohydrin dehalogenases were cloned and expressed in Escherichia coli, and the enzymes were shown to display remarkable differences in sub...

متن کامل

Enantioselective formation and ring-opening of epoxides catalysed by halohydrin dehalogenases.

Halohydrin dehalogenases catalyse the conversion of vicinal halohydrins into their corresponding epoxides, while releasing halide ions. They can be found in several bacteria that use halogenated alcohols or compounds that are degraded via halohydrins as a carbon source for growth. Biochemical and structural studies have shown that halohydrin dehalogenases are evolutionarily and mechanistically ...

متن کامل

Kinetic mechanism and enantioselectivity of halohydrin dehalogenase from Agrobacterium radiobacter.

Halohydrin dehalogenase (HheC) from Agrobacterium radiobacter AD1 catalyzes the reversible intramolecular nucleophilic displacement of a halogen by a hydroxyl group in vicinal haloalcohols, producing the corresponding epoxides. The enzyme displays high enantioselectivity toward some aromatic halohydrins. To understand the kinetic mechanism and enantioselectivity of the enzyme, steady-state and ...

متن کامل

Replacement of tryptophan residues in haloalkane dehalogenase reduces halide binding and catalytic activity.

Haloalkane dehalogenase catalyzes the hydrolytic cleavage of carbon-halogen bonds in short-chain haloalkanes. Two tryptophan residues of the enzyme (Trp125 and Trp175) form a halide-binding site in the active-site cavity, and were proposed to play a role in catalysis. The function of these residues was studied by replacing Trp125 with phenylalanine, glutamine or arginine and Trp175 by glutamine...

متن کامل

Crystallographic and fluorescence studies of the interaction of haloalkane dehalogenase with halide ions. Studies with halide compounds reveal a halide binding site in the active site.

Haloalkane dehalogenase from Xanthobacter autotrophicus GJ10 catalyzes the conversion of 1,2-dichloroethane to 2-chloroethanol and chloride without use of oxygen or cofactors. The active site is situated in an internal cavity, which is accessible from the solvent, even in the crystal. Crystal structures of the dehalogenase enzyme complexed with iodoacetamide, chloroacetamide, iodide, and chlori...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 44 17  شماره 

صفحات  -

تاریخ انتشار 2005